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Ahstract We study the dynamics of a ‘rod‘, a large particle which occupies several lattice 
sites, as it moves in a fluid of monomers each of which occupies only one site. Both the rod 
and the monomers move by hopping to unoccupied neighbouring sites, interacting With each 
other through a hard-core exclusion which prevents two particles f” occupying the same 
site.  reversible hopping rates give rise to a diffusive process for lhe rod which, when rescaled, 
converges to standard Brownian motion. W e  use computer simulations to determine the diffusion 
coefficient as a function of rod size and monomer density. Non-reversible rates bias hops in 
one particular direction and give rise to a driven diffusive behaviour which shows a surprising 
relationship between the rod‘s velocity and its size [I]. Here we present a detailed description 
of this phenomenon including the wse where the rod is held stationq, forming a fixed obstacle. 
We show that some of the features of this driven system can be accounted for by a discretized, 
Burgers-like equation whose linearized continuum analogue describes the Row of ground water 
past an obstacle, but more work remains to be done on the continuum limit of this model. 

. .  
1. Introduction 

In this paper we continue our investigations of a system first introduced in [l], to model 
segregation of different-sizetl particles subjected to shaking in a gravitational field, ‘the 
Brazil nut effect’ [2,3]. .The model consists of a~gas of monomers and a single rod on a 
lattice. A monomer occupies one site and the rod more than one. The particles interact 
by hard-core exclusion; no more than one particle (of either type) is permitted per site. A 
monomer at~site x waits for a Poisson-distributed time with mean 1 and then selects a lattice 
direction e^ with probability ~(2). If the neighbouring site y = x + 0 is unoccupied, the 
particle jumps to that site; otherwise it does not move. 

The rod, just as with the monomers, also waits for a Poisson-distributed time with 
mean 1 and then selects a direction to attempt a hop according to the same rules. In 
particular, the rod can only move when there are enough empty sites to accommodate it. 
The dynamics of the rod complicates the analysis of this system (by breaking translation 
invaiance), and therefore, to simplify matters as much as possible, we assume that we are 
on a two-dimensional square lattice, Zz, and that the rod is rigidly aligned in the vertical 
direction. For a rod of length L to move horizontally. all L sites immediately adjacent to 
it in the direction of motion must be simultaneously unoccupied. Vertical motion requires 
only that the one site adjacent in that direction be empty. This is illustrated in figure 1. 

When there is no rod present, our model is just the much studied simple exclusion 
process whose stationary state is a product measure [4,6]. When the exchange rates are 
symmetric, p ( 0 )  = +ê ), then the dynamics is just reversible Kawasaki dynamics, and the 
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Figure 1. Rod dynamics. The rod (L = 2) may move down or to the left only. 

stationary measure remains a Gibbs measure for a system of hard particles even with a rod 
present. It is easy to verify that the only correlations in this measure come from the direct 
hard-core exclusion of monomers from the sites occupied by the rod. This is so even for a 
finite density of rods as long as they all remain vertically aligned. When the exchange rates 
are not symmetric. however, the procqss is no longer reversible, and the Gibbs measure 
is no longer stationary under the dynamics. In particular, if we look at the distribution of 
monomers as seen from the rod; the density will be non-uniform and correlated. 

We chose the asymmetry (driving field) to be perpendicular to the rod axis. Previous 
computer simulations [I] of this model showed a surprising relationship between the net 
velocity of the rod (average displacement in the field direction per unit time) and its length 
in the stationary state. Beyond a certain length (which depends on jump rates p ( 2 )  and 
monomer density PO), longer rods moved faster! This behaviour is certainly counter- 
intuitive, since we expect the exclusion rule to inhibit the motion of long rods more than 
that of short rods. 

In this paper we study both the diffusive and driven versions of.this model. In section 2 
we show that when the jump rates are symmetric, the motion of the rod converges to 
Brownian motion. From computer simulations we determine the corresponding diffusion 
constant as a function of rod length. In section 3 we consider the driven, asymmetric case 
and present results of new, more comprehensive simulations. We also consider the case of a 
fixed rod corresponding to flow around an obstacle. We then show in section 4 that certain 
features of this system, can be described well by a lattice Burgers’ equation. A calculation 
of the density profile for weak asymmetry is given in the appendix. 

2. Diffusion 

In this section we consider symmetric jump rates: p ( f&)  = p(fZ2) = $. These give rise 
to purely diffusive motion. We examine three cases. 

Single Particle. Consider the motion of a single particle, either a monomer or rod, with 
no other particles present on the lattice. This particle executes a simple random walk, and 
the resulting motion is diffusive with mean-square displacement ((AT)’) = Dot, where 
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DO is the diffusion constant. Upon rescaling, this process converges to standard Brownian 
motion [5]. 

Tagged Monomer. Next consider the case of one tagged monomer in a ‘sea of monomers’ 
with density po; i.e. the rod with L = 1. The tagged particle is no longer able to execute a 
simple random walk because of the exclusion effects of the other monomers. One expects 
that the motion of the tagged particle is still diffusive,’ but with a reduced (po-dependent) 
diffusion constant D(p0). This is indeed the case, including convergence to Brownian 
motion, but it is by no means trivial to prove [6,7]. 

As a first approximation one might expect that the diffusion constant is of the form 
D(p0) = Do(1 -PO), since successful jumps are reduced by a factor of (1 -PO) due to the 
exclusion rule; remember that po is the density of monomers as seen from the tagged particle 
in the stationary state. This, however, involves an assumption that the tagged particle leaves 
no memory trace of its path. That is, each .time the tagged particle attempts a jump, all 
neighbouring sites are occupied with equal probability po. What is clearly neglected is 
that when the tagged monomer jumps to a neighbouring site, then (obviously) the site~just 
vacated is empty. Hence, the ‘new neighbourhood’ of the tagged monomer is not isotropic. 
Even though the vacated site may become occupied before the tagged particle attempts to 
jump again, it is more likely to be empty at the time of the next tagged monomer jump, and 
hence, the tagged monomer is more likely to return to it than to be at any other site. This, 
and other indirect ‘correlation’ effects reduce the diffusion constant even beyond that of 
the exclusion effect alone. To account for these effects the diffusion constant is commonly 
written as 

where f (po) is called the correlation factor. 
The correlation factor has been studied theoretically in the context of solid state 

diffusion [S-lo]. It has been calculated by perturbative methods and agrees well with 
computer simulations. On the two-dimensional square lattice [ l l l  D(po) = Do(l-po)f(po), 
and the correlation factor is found to be given approximately by 

(2) 

Note that f (00) in (2) equals 1 for po = 0 and is a monotonically decreasing function of 
the density. In figure 2(u) we compare (2) to the correlation factor for a tagged monomer 
obtained from simulations. A similar comparison appears in [91. 

For the symmetric simple exclusion process with arbitrary jump rates in two or 
higher dimensions, it is known that +e self-diffusion matrix S(p0) has the form S(p0) = 
(1 - po)b(po) where &pa) is non-decreasing in PO. Moreover, 6(po)  is bounded away 
from zero from below as p i  tends to 1 1121. 

Diffusing Rod. When the rod has L.> 2, the case of primary concern in this paper, then 
the diffusion constant for motion will also depend on the rod length. Since more sites 
need to be simultaneously unoccupied for the rod to move sideways, we expect and find 
that, for a fixed density of monomers, the diffusion constant in the x-direction decreases 
monotonically to zero with length. However, the correlation factor, now defined by 
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Figure 2. Correlation factors determined by simulating the diffusion process on lattices of size 
16 x 16 with various monomer densities and tagged rod lengths. Averages were taken over an 
ensemble of5000 independent systems. (a)+) Correlation factors fordiffusion perpendicular to 
the rod axis. (g) Correlation facton for diffusion as a function of length for monomer densities 
pa = 0.1 (0). pa = 0.3 (.) and pa = 0.5 (0). 

has a more complicated behaviour. In particular, the correlation factor appears to be non- 
monotonic in the density PO. Instead, there is a po for which f f p o )  has a minimum. This is 
shown in figures Z(bKfl. In figure Z(g) we show the length dependence of the correlation 
factor for various densities. It appears, therefore, that at high densities, the rod is not as 
likely to return to the site that it has vacated as it is at lower densities. For longer rods, 
this 'critical density' decreases. The diffusion constant for motion parallel to the rod axis 
appears to be independent of length, to within statistical errors. 

2.1. Brownian motion 

We wish to show that under a proper rescaling of space and time the rod motion converges to 
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L Figure 2. Continued. 

Brownian motion with a positive diffusion constant, as was done by Kipnis and Varadhan [7] 
for a tagged monomer in a simple exclusion process. 

Let x, be the position of the rod at time t .  For diffusive processes the length scale over 
which a particle diffuses is proportional to the square root of the time of evolution. We 
therefore look at the process on lengths rescaled. by E and $mes rescaled by eZ. In the limit 
where + 0, the rescaled position of the rod, x: =  EX^.^^,^ should behave as a Brownian 
path. 

To prove this, we observe that as already mentioned, the uniform product measure 
conditioned on having a rod at the origin, is a reversible measure for the dynamics as 
seen from the rod. It then follows from DeMasi et al 1131 that the tagged particle motion 
converges to Brownian motion, and all we need to show is that the diffusion constant is 
strictly positive. We can do this by following Spohn‘s extension of the Kipnis-Varadhan 
argument [6], which then gives 

lim E X < - Z ~  = (2D)”Lb(t), (4) 
6-0 

with D z 0 a positive detinite 2 x 2 matrix, and b(t) a Brownian motion in two dimensions 
with b(0) = 0, and 
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3. Driven system 

For the case of asymmetric jump rates, we carried out simulations on N x N square lattices 
with periodic boundary conditions in both directions. On an initially empty lattice, we 
placed the rod with length L = 1,2, .~,. . and then randomly deposited (the integer part of) 
po(N2 - L )  monomers on the remaining sites subject to the exclusion rule. We simulated 
the process by randomly selecting a lattice site; if it was unoccupied, we chose another. 
Once an occupied site was selected, the particle at that location attempted to move to a 
neighbouring site as dictated by the probabilities p(2): 

p(-81) 0 ~ ( 2 1 )  = bll ~ ( - 2 2 )  = p(&) b i  = i(1 - 611). (6) 

Next the occupancy of the target site was checked. If that site was empty, the move 
was successful, otherwise nothing happened, and the process repeated. This simulated the 
continuous-time Poisson process outlined above, and the jump rates guaranteed that the only 
conserved quantity was particle number. 

For a pure monomer system we know the average velocity of a monomer exactly: 

V ( 1 , p o ) = b i l ( l - d . ,  (7) 

Equation (7) follows from the fact mentioned earlier that a monomer sees a uniform 
distribution at density pa, so that the probability that the site adjacent to the monomer is 
empty is 1 - po. We compared simulations of these pure monomer systems to (7) and found 
for runs of 40 000 MCS that the simulated monomer velocities were typically within 1% of 
their exact values. 

In figure 3 we plot the normalized velocity of the rod, defined as the ratio of the measured 
rod velocity to the known monomer velocity for the same parameters V ( L ,  pO)/V(l, PO) as 
a function of its length for three monomer densities po = 0.25 ,0.50 and 0.75. The lattice 
is of size 128 x 128 and the jump rates are bll = 0.5 and b l  = 0.25. As can be seen, there 
is a minimum in these curves, so longer rods move faster! How can this be, given that 
more sites need to be empty in order for the longer rods to move? 

We considered the possibility that this anomaly was a result  of^ finite lattice size. We 
found, however, that the ‘longer rods travel faster’ result was only reinforced by simulating 
the process on successively larger lattices. This behaviour is shown in figure 4 where we 
plot the velocity of an L = 3 and an L = 6 rod as a function of inverse lattice size. 
For these plots the density of monomers po = 0.5 and the jump rates are as before. We 
allowed the system to evolve for IO000 MCS to reach a stationary state, and over the next 
40000-50000 MCS interval determind the rod velocity. These velocities for all but the 
largest N = 256 and N = 512 lattices were determined from three independent runs. Only 
one system was simulated for N = 256 and N = 512. 

3.1. Stationary rod 

It is instructive to consider the process in which the rod is not permitted to move and 
thus acts as a fuced obstacle to monomer motion. Simulating this case, we determined 
the probability P,,(L) that all of the sites immediately to the right of the rod were 
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F i , w  5. Stationary rod. Probability that all Sit= to the right are unoccupied (N = 128). 
10 000 MCS to equilibrate. Averages taken over next 50000 MCS. 

simultaneously unoccupied. We found behaviour for P,,(L) similar to what we observed in 
the moving rod case. In figure 5 we show P,,(L) for three different monomer densities PO. 
The system size was 128 x 128, and the jump rates were the same as before. Note that the 
asymptotic behaviour of PSmt(L) seems to be be density-independent! 

For a moving rod the normalized velocity, also seemed to become density-independent 
asymptotically in L (figure 3). This suggesests that the long rods, whether stationary or 
moving, distort the local monomer profile to a state which is po-independent. 

In the case of a stationary rod, when the monomer density po = 0.5, there is a special 
symmetry in the dynamics of particles and holes. The average density of holes at a site is 
equal to the average density of particles at the site reflected through the rod axis: 

(8) (p( i& + j & ) h  = 1 - ( ~ t - i 2 1 +  i&hS 
where the angle brackets 0. indicate a steady-state average. Therefore, the average site 
density along the line containing the rod axis is po = 0.5. In the stationary state density 
profiles we see this behaviour for po = 0.5 (figure 6(a)) while for densities pa # 0.5, there 
is a ‘wing-like structure’ in the density pattern (figure 6(b)) with a ‘wing-like’ region of 
lower (than PO) density to the right of the rod. If the monomer density po < 0.5, there is a 
‘wing-like’ region of higher (than po) density to the right of the rod (figure 6(c)). 

4. Macroscopic equations 

Our simulations have presented us with an interesting and unexpected dependence of the 
density in front of the rod as a function of its length. We now describe some related 
continuum models whose behaviour is quite similar to that of PSai for the particle model. 
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Figure 6. Average monomer density per site. Rod 
lemth L = 6.  Only sites with averwe densiw - 
greater than the lattice average density of monomers m 
darkened; (a) PO = 0.5, (b) PO = 0.75, (c) pa = 0.25. - I C 1  

4.1. Macroscopic Equations 

Consider the continuum problem of driven diffusive flow past an impenetrable obstacle in 
two dimensions. We choose a disk of radius 1 centred at the origin, since for this geometry 
the problem is exactly soluble.. In the limit of low particle density, the particle current is 
composed of two terms: a linear diffusion term - D V p  and a drift term &up.' Therefore, 
the total current is given by 

J ~ =  -DVp + & v p .  (9) 

and using the equation of continuity . 

_ = _  V . J  
as 

we have 

ap - =  DAp - U-. 
at ax 



692 F J Alexander and J L~kbowi t z  

P > PO FIELD - 
Figure 7. Map of density p for linearized diffusive drift past a disk. profiles are obtained from 
the exact solution of Philip et al [14]. 

The boundary condition prohibiting a particle current from crossing the disk surface is, 
according to equation (9), 

at the surface. Here 0 is the angle measured from the positive x-axis. 
Note that while our particle model, has an upper bound on the particle density per site, 

0 < p < 1, the continuum (Il), (12) impose no such condition. Nevertheless, we expect 
equations (Il), (12) to provide a qualitative understanding of the density profile when the 
particle density is low, p << 1 and the drift is weak relative to the diffusion u/D << 1. 

Equations (ll), (12) were recently studied in the context of unsaturated flow of ground 
water past obstacles by Philip et a1 1141 and solved exactly in the form of an infinite series 

The qualitative features of the density profile (figure 7) resemble those observed in the 
simulations of monomer flow past a stationary obstacle (figure 6(b)). Namely, to the right 
of the disk there is a ‘shadow region’ with particle densities lower than the asymptotic 
density: p(r,  @ ) / p 0  < 1. There are lobes which extend around the disk with a higher 
density, and there is a boundary layer region of much higher density immediately to the 
left. 

4.1.1. Discretized equations. We have also analysed a continuous-density, correlationless 
version of the particle process. In this case we replace the Boolean variable q(x) ,  
representing the particle occupation number, by a continuous density p(x),  0 < p ( x )  < 1. 
At each time step there is a flux J of density out of a site x to each of its neighbours. This 
flux consists of two contributions. The first 

(14) Jddfl = V P ( 1  - P F l  . 
results from the drift and the second 

Jd i~  = D V i p  (15) 
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Fwre 8. Psmt(L) for the linearized discrete equation with D = 0.25, w = 0.5, and v = 0.50, 
N = 128. 

a diffusive flux perpendicular to the drift. This process arises from a naive finite differencing 
of Burgers’ equation 

We further impose the condition that there can be no flux through a length L (rod) obstacle 
centred on the origin and oriented perpendicular to the drift. In addition to the nonlinear 
drift we have also considered a linearized version: 

Jddir = Up&. (17) 

Of interest are the steady-state local densities at sites immediately to the right of the 
obstacle. We relate these densities to the probability that all of these sites are simultaneouly 
unoccupied through 

This approach assumes no correlations between monomers in the actual particle process. 
In figure 8 we show the results for the linear process. This was run on a 128 x 128 

lattice with periodic boundary conditions in both directions. For comparison, we have set 
D = 0.25, the same as the perpendicular rates in the particle process, and U = 0.5. Note 
that P,&) is monotonically decreasing in L. 

In figure 9 we plot Psmt(L) as a function of rod length for the discrete nonlinear process 
with initial densities p&) = 0.25, 50 and 0.75 with D = 0.25 and U = 0.50. The results 
look very similar to those obtained from simulations of the particle process as seen in 
figure 5. . .  
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Fi- 9. PSu,(L) far the nodinex discrete equation with D = 0.25, U = 0.50. PO = 0.25 (x): 
po = 0.50 (.), and po = 0.75 @I. N = 256. 

5. Summary 

We have studied an interacting particle model with two kinds of particles on a lattice. 
While some of its properties were expected and are well understood (e.g. flow patterns and 
convergence to Brownian motion) others were surprising and remain unexplained except at 
a heuristic level. 

The anomalous behaviour of the rod velocity, V ( L )  and probability that all sites to 
the right of the rod are unoccupied P,,, appears to be a result of the exclusion rule in 
the particle dynamics and the blocking effect of the rod. We have shown that steady-state 
values of the continuous density process reveal similar behaviour, so that the effect seems to 
have a hydrodynamic explanation. However, we have not shown that this is the appropriate 
hydrodynamic limit of OUT model. This remains an open problem. 

Why Psm1 is density-independent (and length-independent) for asymptotically long rods, 
is also an open problem. The anomalous behaviour appears to result from the fact that 
the blocking of long rods is primarily at the ends. Long rods create a larger depletion 
region (more holes) to the right of them. These holes are then driven to the left and replace 
particles near the edges. The longer the rod, the lower the density near the edges. Near the 
rod (for long rods) a density profile is established which is independent of the asymptotic 
density of monomers PO. 
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Appendix. Weak-field limit 

Here we calculate the density profile of monomers where one site is blocked and the 
asymmetry in the jump rates, along the positive 91 axis, is weak. It is convenient to work 
in the language of spins s = f l  using the relationship 

s ( x )  = 2q(x)  - 1. (AI) 

We also translate the average monomer density po into the net magnetization m = 2p0 - 1. 
We then have the master equation 

with jump rates from x to y in the configuration s 

i.e. the site at the origin always has spin up (occupied), while all other sites have average 
magnetization m (particle density (m + l)/Z). 

To first order in E we have 

Here A,  and^ All are~finite-difference Laplacians 
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A~~s(x)  = S ( X  + 21) - ~ S ( X )  + S(X - 21) 

and (s(x)) ,  denotes the first-order correction to the stationary ( s ( x ) )  

(A71 

( s ( x ) )  =8,,0+(1 - & . o ) ~ + E ( s ( x ) ) I  +... . (A81 

We introduce the zeroth-order approximation to the two-point function 

{ s ( x ) s ( x  + & ) ) o  = 6,.0(1- m)m + &,-;,(1 - m)m + m z .  (A9) 

After some algebra we find 

A(s (x ) ) l  =$,o({~(e^i))i)+S,,-,-,(1 - m 2 + ( s ( - & ) ) i )  +&,&(m2- 1+ ( s ( & ) ) I )  

In this form the density perturbation ( s ( x ) ) l  resembles an electrostatic potential due 
to a point charge of strength (s(&))1 located at the origin and charges of strength 
(1 - m2 + (s(-21). (m2 - 1 + (s(Pl))l), and ((s(2))l  + ($(-;))I) one lattice unit from 
the origin in the lattice directions. 

The problem simplifies considerably if we consider the special case of p = $ or 
equivalently m = 0. Then, due to particle-hole duality, we have the following: 

(s(0)) l  = 0 for ê  121 (A1 1) 

= G x . - ~ ~ ( l  + b - & ) ) 1 ) + & , ~ ~ ( - 1  + ( S ( & ) ) I ) .  6413) 
The perturbed density profile behaves like a potential due to a dipole of charges. Namely, 

( ~ 1 4 )  
€ 

( s ( x ) )  = r,_,cosO(-l + (s(e^,))J r >> 1 .  

References 

[ I ]  Alexander F I and Lebowitz I L 1990 L ,Phys. A: Mdh. Gen. L375 
121 Rosato A, Prinz F, Strandburg K I and Swendsen R U 1986 Powder Technol. 49 59 
[3] Rosm A, Strandburg K J, Prim F and Swendsen R U 1987 Phys. Rev. Lefr. 58 1038 
[4] Liggea T M 1985 Inreracrins Parriele S y p m  (New Yo* Springer) 
[5] Billingsley P 1971 Weak Convergence ~Measures:  Applications in Probabiliry (Philadelphia: SIAM) 
[61 Spohn H 1991 m e  Scale Dynamics of Interacting Particles: Texis and Monographs in Physics. (Berlin: 

[7] Kipnis C and Vamdhan S R S, 1986 ,Cq,mun; Mark Phys. 104 1 
[E] Kehr K W and Haus R 1987 Phys. Rep. 150 263 
[91 Kehr K W and Binder K 1984 Applicarion of rhe Monre Carlo Merhod in Slorirricnl Physics ed K Binder 

[IO] Sankey 0 F and Fedders P A 1976 Phys. Rev. B 15 3586 
[ I l l  N a b t o  K and Kitahua K 1980 Pros. Theor. Phys. 64 2261 
[I21 Vxadhan S R S. private communication 
[I31 DeMasi A, F e d  P A .  Goldstein Sand Wick W D 1989 J. Slat. Phys. 55 787 
[I41 Philip J R, Knight I U and Waechter R T 1989 WaferResouzesRes. 25 16 

Springer); 1990 J. Sror. Phys. 59 1227 

(Berlin: Springer) 


